THERMAL DECOMPOSITION OF HEAVY LANTHANIDE 3-HYDROXYBENZOATES IN AIR AND NITROGEN ATMOSPHERES

W. Brzyska, A. Kula and M. Dąbkowska

DEPARTMENT OF INORGANIC AND GENERAL CHEMISTRY, INSTITUTE OF CHEMISTRY, MARIE CURIE SKŁODOWSKA UNIVERSITY, 20-031 LUBLIN, POLAND

(Received June 22, 1984)

The conditions of thermal decomposition of heavy lathanide complexes with 3-hydroxybenzoic acid in air and nitrogen atmospheres have been studied. On heating, the complexes of Gd, Dy, Ho, Yb and Lu decompose in three stages. First, the hydrated complexes lose crystallization water and the anhydrous salts heated in air are then transformed to Ln_2O_3 , or in a nitrogen atmosphere to Ln_2O_3 and C. Complexes of Tb(III), Ho and Er are dehydrated in two stages during heating, and the anhydrous complexes are converted in air to Ln_2O_3 and Tb_4O_7 , and in a nitrogen atmosphere to a mixture of oxides and C. The carbon content in the decomposition product ranges between 9.7% for Gd and 19.6% for Ho.

The dehydration of the complexes is accompanied by endothermic effects. The decomposition of 3-hydroxybenzoates is exothermic in air and endothermic in nitrogen.

The salts of 3-hydroxybenzoic acid are little known. 3-Hydroxybenzoates of NH_4 , Li, Na, K, TI(I) and Cd have been obtained as anhydrous salts [1, 2], and those of Rb, Cs, Ca, Cu(II) and UO_2^{2+} as hydrated ones [1-3]; they are crystalline, and soluble in water and ethanol. The sodium salt fluoresces. The IR spectra of the TI(I) [4] and Na [4-6] salts have been studied. The frequencies of the absorption bands of the OCO- groups indicated ionic bonding in the complexes. A search of the available literature showed that 3-hydroxybenzoates of rare earths have not been studied so far. As a continuation of our work on the thermal decomposition of nare earth carboxylates, we now report the thermal decomposition of heavy lanthanide 3-hydroxybenzoates in air and nitrogen atmospheres.

Experimental

Complexes of 3-hydroxybenzoic acid with heavy lanthanides from Gd to Lu were prepared by dissolving freshly precipitated lanthanide hydroxides in an equivalent quantity of 3-hydroxybenzoic acid and crystallizing at room temperature. The pre-

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

cipitates formed were filtered off, washed with distilled water and dried at 30° to constant weight.

The carbon and hydrogen contents of the complexes were determined by elemental analysis with V_2O_5 as oxidizing agent. The rare earth element contents were determined by ignition of the complexes to Ln_2O_3 or Tb_4O_7 at 900° and by thermogravimetry.

The results showed that the complexes of heavy lathanides with 3-hydroxybenzoic acid were prepared as hydrated compounds with a metal to ligand ratio of 1:3. 3-Hydroxybenzoates of Gd, Dy, Tm and Yb were obtained as tetrahydrates, and of Tb(III), Ho, Er and Lu as pentahydrates (Table 1). Complexes of Gd, Dy, Ho, Tm, Yb and Lu were obtained as cream-coloured crystalline solids; that of Tb was greenish, and that of Er pale-pink.

X-ray study confirmed that the complexes are crystalline compounds of low symmetry with large unit cells. They are characterized by different structures and different degrees of crystallinity.

							_
0	Н	, %	с	, %	М	, %	
Complex	Calcd.	Found	Calcd.	Found	Calcd.	Found	
Gd $(C_7H_5O_3)_3 \cdot 4H_2O$	3.61	3.24	39.37	40.19	24.53	24.28	
Tb (C ₇ H ₅ O ₃) ₃ · 5 H ₂ O	3.81	3.34	38.19	39.87	23.91	23.38	
$Dy (C_7H_5O_3)_3 \cdot 4H_2O$	3.58	3.61	39.05	38.90	25.15	24.83	
Ho (C ₇ H ₅ O ₃) ₃ · 5 H ₂ O	3.78	3.57	37.85	40.70	24.75	24.01	
Er (C ₇ H ₅ O ₃) ₃ · 5 H ₂ O	3.76	3.31	37.72	38.93	25.01	24.92	
$Tm(C_7H_5O_3)_3 \cdot 4H_2O$	3.55	3.35	38.66	38.05	25.89	25.34	
Yb (C ₇ H ₅ O ₃) ₃ · 4 H ₂ O	3.53	3.33	38.4 2	38.71	26.35	26.34	
Lu (C ₇ H ₅ O ₃) ₃ · 5 H ₂ O	3.72	3.24	37.29	37.31	25.87	26.38	

Table 1 Analytical data

 Table 2 Frequency of absorption bands of COC⁻⁻ ion of Na and heavy lanthanide 3-hydroxybenzoates (cm⁻¹)

Complex	^v as	[₽] sym	Δν	^ν M–0
Na	1570	1410	160	475
Gd	1540	1415	125	425
Tb	1535	1420	115	430
Dy	1535	1415	120	425
Ho	1530	1420	110	425
Er	1530	1420	110	425
Tm	1535	1420	115	435
Yb	1530	1420	110	425
Lu	1540	1425	115	430

J. Thermal Anal. 30, 1985

The IR spectra of the complexes were recorded in the range $4000-400 \text{ cm}^{-1}$. They are similar to one another. Analysis of the IR spectra confirms the compositions of the complexes.

In the IR spectra of the 3-hydroxybenzoates of the heavy lathanides, broad absorption bands appear with max. at 3420-3340 cm⁻¹ and sharp bands at 1620-

Fig. 1 TG, DTG and DTA curves of Gd(C₇H₅O₃ • 4 H₂O. a) in air, b) in nitrogen

1600 cm⁻¹, confirming the presence of crystallization water in the outer coordination sphere. The bands of the asymmetric and symmetric vibrations of the OCO- group appear at 1540–1530 cm⁻¹ and 1425–1415 cm⁻¹, respectively (Table 2), and the bands of the metal–oxygen bond at 435–425 cm⁻¹.

The displacement of the v_{asym} and v_{sym} bands of these complexes relative to those for the sodium salt indicate that the carboxylate ion behaves as a bidentate chelating ligand [7].

The thermal stabilities of the complexes were studied. TG, DTA and DTG curves were recorded on an OD-102 derivatograph at a heating rate of 9 deg \cdot min⁻¹. The samples were heated in air and nitrogen atmospheres. The results are presented in Table 3 and Figs 1–3. The solid decomposition products were calculated from the weight losses in the TG curves and were confirmed by recording the IR spectra.

Fig. 2 TG, DTG and DTA curves of Ho($C_7H_5O_3$)₃ · 5 H₂O. a) in air, b) in nitrogen

Fig. 3 TG, DTG and DTA curves of Lu(C $_7$ H $_5$ O $_3$) $_3$ · 5 H $_2$ O. a) in air, b) in nitrogen

ű	
rog	
nit	
and	
air e	
Ē	
cts	
npo	
ď	
ion	
osit	
đu	
всо	
ř. d	
the	
ри	
es a	
oati	
enz	
dy'	
dro	
ňų-	
e O	
bine	
the	
<u>lar</u>	
avy	
f he	
5	
alle	
stab	
Jal I	
ern	
f th	
e o	
gne.	
Le l	ია
ratu	her
npe	dso
Ten	atm
ŝ	
able	
<u>تر</u>	

Ę	Ln(C ₆ H ₄ OHCOC Temp. range, °C	0) ₃ · <i>n</i> H ₂ O H ₂ O	Air/N ₂	Ln(C ₆ H ₄ OH Temp. range, °C	COO) ₃ . Calcd., %	- 2 H ₂ O Found, %	Ln(C ₆ H Temp. range, °C	40HCO(Calcd., %	D) ₃ Found, %	Ln Temp. range, °C	203 * Calcd., %	Found, %	ບໍ %
, pg	20-80 20-80	- 7	∢z		2	2	160-265 160-285	88.75	88.5 88.5	096	28.29	29.0 38.0	9.7
م	20—100 20—100	ດ	۲Z	170200 160200	92.03	92.5 93.0	365—370 360—370	86.36	88.0 87.0	970 920	28.31	27.5 46.0	17.7
ž	20—90 20—80	4	٩z				160—210 160—260	88.84	89.0 89.0	895 920	28.87	28.5 46.0	17.1
ę	20—90 20—80	വ	٩z	160190 140170	91.89	92.5 92.0	360380 360380	86.48	86.7 86.0	940 960	28.35	27.5 48.0	19.6
, \.	20-100 20-100	വ	۷Z	165-205 145-200	91.92	92.0 92.0	370–380 370	86.53	86.0 85.0	930 960	28.60	28.5 46.0	17.4
'E	2080 2080	4	∢z				120–280 125–280	88.95	88.3 88.5	860 960	29.58	29.0 42.0	12.4
ą	20—90 20—70	4	₹Z				140280 140280	89.02	0.0e 0.0e	920 980	30.02	30.0 45.0	15.0
'n	20—80 20—80	ى ا	۷Z				140—270 140—270	86.68	86.3 86.0	800 1000	29.42	29.0 42.0	12.6
e - '	20-70 20-80 20-80	4 m	ZZZ					140–280 140–270 140–270	140–280 ^{89.02} 140–270 86.68 140–270 86.68	140–280 ^{89.02} 90.0 140–270 ^{86.68} 86.0 140–270 ^{86.68} 86.0	140–280 ^{89.02} 90.0 980 140–270 ^{86.68} 86.0 1000 140–270 ^{86.68} 86.0 1000	140–280 ^{89.02} 90.0 980 ^{30.02} 140–270 86.68 86.3 800 29.42 140–270 86.68 86.0 1000 29.42	140–280 ^{89.02} 90.0 980 ^{30.02} 45.0 140–270 ^{86.68} 86.0 1000 ^{29.42} 29.0 140–270 ^{86.68} 86.0 1000 ^{29.42} 42.0

BRZYSKA et al.: DECOMPOSITION OF HEAVY LANTHANIDE

J. Thermal Anal. 30, 1985

Results and discussion

When heated in air, the 3-hydroxybenzoates of heavy lanthanides decompose in different ways. The hydrates of Gd, Dy, Tm, Yb and Lu decompose in two steps (Figs 1a and 3a).

They are stable up to $80-90^{\circ}$, then lose crystalline water to yield the anhydrous salts, this step being accompanied by a strong endothermic effect. The anhydrous complexes are stable up to $210-270^{\circ}$, but decompose to oxides at $800-920^{\circ}$. Lutetium oxide forms already at 800° .

The complexes of Tb(III), Ho and Er decompose in three steps (Fig. 2a). The pentahydrates are stable up to 90--100°, but are transformed at 190-205° to the dihydrates, which are converted to the oxides through the anhydrous salts. The dehydration processes are accompanied by two endothermic effects, but the burning of the organic anion by an exothermic one.

When heated in a nitrogen atmosphere, the hydrated 3-hydroxybenzoates of Gd, Dy, Tm, Yb and Lu decompose in two steps, similarly as in air (Fig. 1b, 3b); the complexes of Tb(III), Ho and Er decompose in three steps (Fig. 2b). The dehydration and decomposition processes are accompanied by strong endothermic effects. The final products of decomposition of lanthanide 3-hydroxybenzoates in a nitrogen atmosphere are mixtures of oxides and carbon. The decomposition products have a high carbon content, ranging from 9.7% for Gd to 19.6% for Ho.

References

- Beilstein Handbuch der organischen Chemie, I. von Springer Verlag, Berlin, 1927, vol. X.
- Beilstein Handbuch der organischen Chemie, Zweites Ergänzungsband, I. von Springer Verlag, Berlin, 1949, vol. X.
- 3 A. Müller, Z. Anorg. Chem., 109 (1919) 242.
- 4 J. J. Charitonov, I. I. Oleynik, A. A. Kniazieva and I. S. Kołomnikov, Koordin. Khimija, 8 (9) (1982) 1285.
- 5 E. Spinner, J. Chem. Soc., 14 (1967) 834.
- 6 B. W. Chodanov, I. A. Poliakowa, I. A. Selivierskova and G. G. Gorovoy, Trudy WNII Khim. reaktivov i osobo chist. khim. vieshchstv, 39 (1977) 148.
- 7 R. E. Manhas and R. A. Plane, Inorg. Chem., 3 (1964) 513.

Zusammenfassung – Die Bedingungen der thermischen Zersetzung von Komplexen der schweren Lanthanide mit 3-Hydroxybensoesäure in Luft und Stickstoffatmosphäre wurden untersucht. Beim Erhitzen zersetzen sich die Komplexe von Gd, Dy, Ho, Yb und Li in drei Schritten. Zuerst verlieren die hydratisierten Komplexe Kristallwasser, die wasserfreien Salze ergeben dann in Luft Ln₂O₃ und in Stickstoffatmosphäre Ln₂O₃ und C als festen Rückstand. Komplexe von Tb(III), Ho und Er werden während des Erhitzens in zwei Stufen dehydratisiert und ergeben bei höheren Temperaturen in Luft Ln₂O₃ bzw. Tb₄O₇ und in Stickstoffatmosphäre eine Mischung der Oxide mit Kohlenstoff als festen Rückstand. Der Kohlenstoffgehalt des Zersetzungsproduktes liegt zwischen 9.7% für Gd und 19.6% für Ho. Die Dehydratisierung der Komplexe geht mit endothermen Effekten einher. Die Zersetzung von 3-Hydroxybenzoaten ist exotherm in Luft und endotherm in Stickstoffatmosphäre.

J Thermal Anal. 30, 1985

Резюме — Условия термического разложения комплексов тяжелых лантанидов с 3-оксибензойной кислотой изучены в атмосфере воздуха и азота. Установлено, что комплексы гадолиния, диспрозия, гольмия, иттербия и лютеция разлагаются в три стадии. Сначала гидратированные комплексы теряют кристаллизационную воду, а затем безводные соли превращаются в атмосфере воздуха до окислов, а в атмосфере азота — до окислов и углерода. Дегидратация комплексов тербия, гольмия и эрбия протекает в две стадии и образующиеся затем безводные комплексы превращаются в соответствующие окислы в атмосфере воздуха, тогда как в атмосфере азота — в смеси окислов и углерода. Содержание углерода в продуктах разложения комплексов гадолиния и гольмия составляло соответственно, 9.7 и 19.6%. Дегидратация комплексов сопровождалась эндотермическими эффектами. Разложение 3-оксибензоатов в атмосфере воздуха является экзотермическим процессом, а в атмосфере азота — эндотермическим.